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The Effect That Genotyping Errors Have on the Robustness of Common
Linkage-Disequilibrium Measures
Joshua M. Akey,1,* Kun Zhang,1,* Momiao Xiong,1 Peter Doris,2 and Li Jin1

1Human Genetics Center, School of Public Health, and 2Institute of Molecular Medicine, University of Texas–Houston, Houston

The rapid development of a dense single-nucleotide–polymorphism marker map has stimulated numerous studies
attempting to characterize the magnitude and distribution of background linkage disequilibrium (LD) within and
between human populations. Although genotyping errors are an inherent problem in all LD studies, there have
been few systematic investigations documenting their consequences on estimates of background LD. Therefore, we
derived simple deterministic formulas to investigate the effect that genotyping errors have on four commonly used
LD measures—D′, r, Q, and d—in studies of background LD. We have found that genotyping error rates as small
as 3% can have serious affects on these LD measures, depending on the allele frequencies and the assumed error
model. Furthermore, we compared the robustness of D′, r, Q, and d, in the presence of genotyping errors. In general,
Q and d are more robust than D′ and r, although exceptions do exist. Finally, through stochastic simulations, we
illustrate how genotyping errors can lead to erroneous inferences when measures of LD between two samples are
compared.

Introduction

Linkage disequilibrium (LD) is becoming an important
tool in genetic studies because it is applicable to a wide
variety of topics, including disease-gene mapping (Col-
lins et al. 1997; Akey et al. 2001a), delineation of the
demographic history of populations (Laan and Paabo
1997), and testing of hypotheses of human evolution
(Tishkoff et al. 1996). However, the full utility of LD-
based applications is currently limited, because relatively
little is known about this complex population genetic
phenomenon. To this end, a number of recent studies
have attempted to characterize the magnitude and dis-
tribution of “background” LD (i.e., LD between anon-
ymous genetic markers) throughout the genome both
within and between human populations (Goddard et al.
2000; Gordon et al. 2000; Jorde et al. 2000; Kidd et al.
2000; Moffatt et al. 2000; Taillon-Miller et al. 2000;
Zavattari et al. 2000; Abecasis et al. 2001). In the con-
text of LD mapping, these studies are very important,
because they provide the framework to address ques-
tions such as which populations are most suitable for
LD mapping and what marker density will be required
to map genes underlying complex diseases.

Received February 19, 2001; accepted for publication April 5, 2001;
electronically published May 16, 2001.

Address for correspondence and reprints: Mr. Joshua Akey, Grad-
uate School of Public Health, University of Texas–Houston, 1200 Her-
man Pressler, Houston, TX 77030. E-mail: jakey@gsbs3.gs.uth.tmc
.edu

* The first two authors contributed equally to this work.
� 2001 by The American Society of Human Genetics. All rights reserved.

0002-9297/2001/6806-0016$02.00

Ideally, a measure of LD between marker loci is only
a function of factors such as population history, age of
the variants, and local rates of recombination. However,
other nonbiological forces may have an impact on es-
timates of LD; for example, genotyping errors can occur
in every LD study. Although the ramifications of ge-
notyping errors have been investigated in the context
of disease-gene mapping (Gordon et al. 1999; Goring
and Terwilliger 2000), there have been no systematic
studies documenting its consequences on estimates of
background LD. In fact, it is generally not understood
for which error rates, if any, various LD measures are
robust to genotyping errors. Therefore, the purpose of
the present article is to (1) demonstrate how genotyping
errors affect four commonly used LD measures and (2)
compare the robustness of these measures in the pres-
ence of genotyping errors.

LD Measures

In the present study, we restrict our analysis to LD be-
tween two single-nucleotide polymorphisms (SNPs), de-
noted as “locus 1” and “locus 2,” which can be arranged
into a table, as shown in table 1. In table 1, loci2 # 2
1 and 2 each have two alleles, denoted as “A” and “a”
and “B” and “b,” respectively. The frequencies of alleles
A, a, B, and b are given by PA, Pa, PB, and Pb, and the
haplotype frequencies of AB, Ab, aB, and ab gametes
are given by PAB, PAb, PaB, and Pab, respectively.

Numerous statistics have been proposed to measure
the degree of LD between two biallelic markers (Hed-
rick 1987; Devlin and Risch 1995; Xiong and Guo
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Figure 1 Symbolic and mathematical representations of error
models used in analyses. The genotyping-error rates at loci 1 and 2
are denoted as m and n, respectively. Panels A and B correspond to the
SEM and the DEM, respectively.

Table 1

Layout and Notation for
Haplotype Frequencies of SNP
Loci 1 and 2

LOCUS 1

LOCUS 2

B b Overall

A PAB PAb PA

a PaB Pab Pa

Overall PB Pb 1

1997). A measure that is fundamental to many LD mea-
sures is the coefficient of LD, or “D” (Lewontin and
Kojima 1960): . WeD p P � P P p P P � P PAB A B AB ab Ab aB

consider four LD measures that are commonly used to
estimate background LD: D′ (Lewontin 1964), r (Hill
and Robertson 1968), d (Nei and Li 1980), and Q (Yule
1900). The formulas for these measures are ′D p

, , ,�D/D r p D/ P P P P Q p D/(P P � P P ) d pmax A a B b AB ab Ab aB

, where is defined as ifD/P P D min {P P , P P } D 1B b max A b a B

, and if . Note that the0 D p min {P P , P P } D ! 0max a b A B

numerators of these measures are all D, and the for-
mulas differ only in their denominators. For further in-
formation about the relationship between D′, r, d, and
Q and for alternative formulations, see the work of
Devlin and Risch (1995).

Genotyping-Error Model

There are several potential sources of error in experi-
mental studies that estimate LD between markers, in-
cluding genotyping errors, haplotyping errors, and hu-
man errors (e.g., entering the wrong allele into a
database). In the present study, we focused only on ge-
notyping errors. We consider two models for genotyping
errors: a stochastic-error model (SEM) and a directed-
error model (DEM). As figure 1 illustrates, the SEM
postulates that there is an equal probability for alleles
at a locus to be erroneously genotyped, whereas the
DEM postulates that there is a greater probability for
one allele to be consistently misgenotyped. Our moti-
vation for contemplating these two models is that dif-
ferent SNP-genotyping methods may be better charac-
terized by the SEM or the DEM. For example, classic
PCR-RFLP genotyping is prone to partial digestion (Wu
et al. 2000), in which one allele is systematically mis-
genotyped; hence, the DEM may be more appropriate.
Alternatively, the SEM may better describe errors that
occur in genotyping methods that rely on hybridization
for discriminating SNP alleles, such as Taqman (Livak
et al. 1995) and oligonucleotide arrays (Halushka et al.
1999). In the results presented in the section “LD Mea-
sures in the Presence of Genotyping Errors,” we assume,
without loss of generality, that the genotyping-error rates

at loci 1 and 2 (m and n, respectively) are equal (i.e.,
).m p n

LD Measures in the Presence of Genotyping Errors

Deterministic Calculations

In this section, we derive simple, deterministic for-
mulas to describe how genotyping errors affect LD mea-
sures. To accomplish this goal, it is necessary to describe
how haplotype frequencies change in the presence of
errors. For example, the change in haplotype frequency
of is: , where and are the′ ′P DP p P � P P PAB AB AB AB AB AB

haplotype frequencies of AB gametes in the presence and
the absence of errors, respectively. Table 2 provides the
formulas for the change in haplotype frequencies for
both the SEM and the DEM. Note that the change in
haplotype frequency is a simple function both of the
genotyping-error rates at loci 1 and 2 and of the “true”
haplotype frequencies, in the absence of any errors. Us-
ing the formulas for the change in haplotype frequencies
provided in table 2 and differentiating the formulas for
the four LD measures described in the section “LD Mea-
sures” provides the changes in LD measures in the pres-
ence of genotyping errors:

DD 1 DP DP DP DPA B a b
Dr p r � � � � ,( )[ ]D 2 P P P PA B a b

1
( )DQ p [DD P P � P PAB ab Ab aB2( )P P � P PAB ab Ab aB

( )�D DP P � P DP � DP P � P DP ] ,AB ab AB ab Ab aB Ab aB

and

1
( )Dd p [DDP P � D DP P � P DP ] ,B b B b B b2 2P PB b
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Table 2

Change in Haplotype Frequencies in the Presence of
Genotyping Errors, for Both the SEM and the DEM

Haplotype SEM DEM

DPAB �(m � n)P � mP � nPAB aB Ab �(m � n)PAB

DPAb �(m � n)P � mP � nPAb ab AB �mP � nPAb AB

DPaB �(m � n)P � mP � nPaB AB ab mP � nPAB aB

DPab �(m � n)P � mP � nPab Ab aB mP � nPAb aB

where , ,DD p DP � DP P � P DP DP p DP � DPAB A B A B A AB Ab

, , and . SinceDP p �DP DP p DP � DP DP p �DPa A B AB aB b B

the formula of D′ involves the minimum of a certain
quantity, a general solution for DD′ is not readily ob-
tainable. Therefore, we derived DD′ in a piecewise fash-
ion, as

1
( )DDP P � D DP P � P DP[ ]A b A b A b2 2P PA b

if D 1 0 and D p P Pmax A b

1
( )DDP P � D DP P � P DP[ ]a B a B a B2 2P Pa B

if D 1 0 and D p P Pmax a B
′DD p .1

( )DDP P � D DP P � P DP[ ]A B A B A B2 2P PA B

if D 1 0 and D p P Pmax A B{ 1
( )DDP P � D DP P � P DP[ ]a b a b a b2 2P Pa b

if D 1 0 and D p P Pmax a b

When , D is not differentiable.D p 0

The Effect That Genotyping Errors Have on LD
Measures

Using the formulas given in the subsection “Deter-
ministic Calculations,” we have extensively explored
how genotyping errors impact estimates of LD. Tables
3 and 4, for the SEM and the DEM, respectively, present
values of D′, r, Q, and d, in the presence and the absence
of genotyping errors over a broad range of allele fre-
quencies. Under the SEM in table 3, it is obvious that
even small genotyping-error rates can have profound
consequences on LD measures, particularly when the
frequency of the minor SNP allele is low. For example,
when and there is complete LD ( )′P p P p .9 D p 1A B

in the absence of genotyping errors, a 3% error rate
reduces D′, r, and d to .67, .67, and .65, respectively,
whereas Q is unaffected. In fact, in the special case that

and the true value of , we can showP p P Q p �1A B

that Q is independent of genotyping errors. Moreover,
as the minor-allele frequencies at SNP loci 1 and 2 in-

crease, LD measures tend to become increasingly robust
to genotyping errors.

Overall, these general observations are qualitatively
similar, if we assume that genotyping errors follow the
DEM (see table 4). A notable difference between these
two error models is that genotyping errors tend to be
less severe for a fixed error rate under the DEM com-
pared to that under the SEM. When the minor-allele
frequencies are low, the differences between the DEM
and the SEM are negligible. For instance, when P pA

, and the genotyping-error rate is 3%, and thereP p .9B

is complete LD ( ) in the absence of genotyping′D p 1
errors, D′ is reduced to .67 under the SEM (table 3) and
.70 under the DEM (table 4). However, the differences
between the SEM and the DEM become more pro-
nounced when the minor-allele frequencies increase. Fi-
nally, it is interesting to note that, for a given set of
haplotype frequencies, the values of D′, r, Q, and d, in
the absence of genotyping errors, can vary substantially
(see table 3). For a review of conditions under which
LD measures are or are not correlated, see the work of
Hedrick (1987).

Comparing the Robustness of LD Measures in the
Presence of Genotyping Errors

Although tables 3 and 4 are useful for providing a
general overview of how genotyping errors affect the
values of D′, r, Q, and d, they do not allow for a direct
comparison of which measure is more robust to errors.
Therefore, to facilitate comparisons of how genotyping
errors affect these four LD measures, the fractional error
(FE) for each LD measure was calculated as (l �T

, where denotes the true value of the LD mea-l ) /l lE T T

sure in the absence of errors and where denotes thelE

value of the LD measure in the presence of genotyping
errors. For example, the FE value of D′ is ′(D �T

. For presentation purposes, it is useful to con-′ ′D ) /DE T

sider the fractional true (FT) value, which is simply
1�FE. Figure 2 plots the FT values for D′, Q, r, and d,
as a function of the genotyping-error rate for both the
SEM and the DEM.

Several interesting observations emerge from figure 2.
First, for both the SEM and the DEM, genotyping errors
have a substantial impact on estimates of LD, and, as
expected, the higher the error rate, the smaller the FT
value. Moreover, it is evident that, as described in the
subsection “The Effect That Genotyping Errors Have on
LD Measures,” genotyping errors that follow the DEM
tend to be less severe than errors that follow the SEM.
Second, under certain circumstances, D′, r, Q, and d do
differ in their robustness to genotyping errors. For low
error rates (!2%), these four LD measures do not sub-
stantially differ, regardless of the assumed error model
or the allele frequencies. However, as the error rate in-
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Table 3

The Effect That Genotyping Errors Have on LD Measures, under the SEM, as a Function of Allele Frequency

PB

LD WHEN GENOTYPING-ERROR RATE IS

3.00% 5.00%

′DT
′DE rT rE QT QE dT dE

′DT
′DE rT rE QT QE dT dE

:P p .90A

.90 1.00 .67 1.00 .67 1.00 1.00 1.00 .65 1.00 .44 1.00 .44 1.00 1.00 1.00 .42
.50 .33 .50 .33 .92 .83 .50 .32 .50 .22 .50 .22 .92 .76 .50 .21

.50 1.00 .64 .33 .26 1.00 .71 .20 .18 1.00 .40 .33 .21 1.00 .52 .20 .16
.50 .32 .17 .13 .54 .37 .10 .09 .50 .20 .17 .10 .54 .25 .10 .08

.10 �1.00 �.67 �1.00 �.67 �1.00 �1.00 �1.00 �.91 �1.00 �.44 �1.00 �.44 �1.00 �1.00 �1.00 �.86
�.50 �.33 �.50 �.33 �.92 �.83 �.50 �.46 �.50 �.22 �.50 �.22 �.92 �.76 �.50 �.43

:P p .70A

.90 1.00 .66 .51 .39 1.00 .86 .78 .50 1.00 .43 .51 .31 1.00 .77 .78 .32
.50 .33 .25 .19 .68 .52 .39 .25 .50 .21 .25 .15 .68 .42 .39 .16

.50 1.00 .84 .65 .57 1.00 .94 .60 .53 1.00 .73 .65 .51 1.00 .89 .60 .48
.50 .42 .33 .28 .65 .57 .30 .26 .50 .37 .33 .26 .65 .52 .30 .24

.10 �1.00 �.66 �.51 �.39 �1.00 �.86 �.78 �.71 �1.00 �.43 �.51 �.31 �1.00 �.77 �.78 �.67
�.50 �.33 �.25 �.19 �.68 �.52 �.39 �.36 �.50 �.21 �.25 �.15 �.68 �.42 �.39 �.34

:P p .50A

.90 1.00 .64 .33 .26 1.00 .71 .56 .36 1.00 .40 .33 .21 1.00 .52 .56 .23
.50 .32 .17 .13 .54 .37 .28 .18 .50 .20 .17 .10 .54 .25 .28 .12

.50 1.00 .88 1.00 .88 1.00 1.00 1.00 .88 1.00 .80 1.00 .80 1.00 1.00 1.00 .80
.50 .44 .50 .44 .80 .74 .50 .44 .50 .40 .50 .40 .80 .70 .50 .40

.10 �1.00 �.64 �.33 �.26 �1.00 �.71 �.56 �.51 �1.00 �.40 �.33 �.21 �1.00 �.52 �.56 �.48
�.50 �.32 �.17 �.13 �.54 �.37 �.28 �.25 �.50 �.20 �.17 �.10 �.54 �.25 �.28 �.24

NOTE.—LD values were generated by defining , , and D′, from which haplotype frequencies were calculated via the formulasP P D pA B

, , , , and . , , and were then calculated from these haplotype′D D P p D � P P P p P � P P p P � P P p 1 � P � P � P Q r dmax AB A B Ab A AB aB B AB ab AB aB Ab T T T

frequencies.

creases, the differences between D′, r, Q, and d become
more pronounced. Third, whether one measure is “su-
perior” strongly depends on the underlying allele and
haplotype frequencies and on the error model. For ex-
ample, in figure 2A, with the same set of allele and hap-
lotype frequencies assumed, d is more robust for the
SEM, whereas Q is more robust for the DEM.

Even if one assumes the same error model, these four
LD measures demonstrate different patterns of robust-
ness, depending on the allele and haplotype frequencies.
For instance, notice that under the DEM in figure 2A
(where and ) the order of FT values isP p .6 P p .4A B

, whereas in figure 2B (where and′Q 1 r 1 D 1 d P p .5A

) the order changes to . Interest-′P p .4 D 1 Q 1 r 1 dB

ingly, for this set of haplotype frequencies, D′ is inde-
pendent of genotyping errors for the DEM. In fact, if

1′ ( )DD p DDP P � D DP P � P DP ,[ ]A B A B A B2 2P PA B

D′ is independent of genotyping errors when P P pA B

, which is satisfied only if a DEM isD (DP /DD � 1)AB

assumed.
To more systematically investigate for which param-

eters an LD measure is more robust than the other mea-
sures, we computed the ratio of FT values. For example,

to compare D′ to r, we compute the quantity .FT /FT′D r

Thus, if , then r is more affected by geno-FT /FT 1 1′D r

typing errors; conversely, if , then D′ is moreFT /FT ! 1′D r

affected by genotyping errors. In other words, in the
presence of genotyping errors, if the ratio of FT values
is !1, then the LD measure in the denominator is more
robust, whereas, if the ratio of FT values is 11, then the
LD measure in the numerator is more robust. Obviously,
if the ratio of FT values equals 1, then the two measures
are equally affected by genotyping errors.

Figure 3 plots the ratio of FT values for all six pairwise
comparisons of LD measures, as a function of , forPAB

both the SEM and the DEM. Obviously, there is a com-
plex relationship between the ratio of FT values and the
underlying haplotype and allele frequencies. Moreover,
there are notable differences between the robustness of
measures, depending on the error model that is assumed.
Compared to the SEM, the DEM shows a narrower
range of ratios, which also tend to remain more constant
over wider ranges of allele and haplotype frequencies.
Under the SEM, there are also many ranges of allele and
haplotype frequencies in which the ratio of FT values
between two measures is ∼1. For example, in figure 3A,
under the SEM , for all values of (and,FT /FT p 1 P′r D AB

as a consequence, and are mirror images of′Q/D r/Q
one another). However, for both the SEM and the DEM,
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Table 4

The Effect That Genotyping Errors Have on LD Measures under the DEM, as a Function of Allele Frequency

PB

LD WHEN GENOTYPING-ERROR RATE IS

3.00% 5.00%

′DT
′DE rT rE QT QE dT dE

′DT
′DE rT rE QT QE dT dE

:P p .90A

.90 1.00 .70 1.00 .70 1.00 1.00 1.00 .68 1.00 .50 1.00 .50 1.00 1.00 1.00 .47
.50 .35 .50 .35 .92 .83 .50 .34 .50 .25 .50 .25 .92 .77 .50 .24

.50 1.00 .70 .33 .27 1.00 .76 .20 .18 1.00 .50 .33 .23 1.00 .60 .20 .17
.50 .35 .17 .14 .54 .39 .10 .09 .50 .25 .17 .12 .54 .29 .10 .09

.10 �1.00 �.67 �1.00 �.83 �1.00 �1.00 �1.00 �.94 �1.00 �.44 �1.00 �.72 �1.00 �1.00 �1.00 �.89
�.50 �.33 �.50 �.42 �.92 �.87 �.50 �.47 �.50 �.22 �.50 �.36 �.92 �.84 �.50 �.45

:P p .70A

.90 1.00 .70 .51 .41 1.00 .88 .78 .53 1.00 .50 .51 .34 1.00 .80 .78 .37
.50 .35 .25 .20 .68 .54 .39 .26 .50 .25 .25 .17 .68 .44 .39 .18

.50 1.00 .90 .65 .60 1.00 .96 .60 .55 1.00 .83 .65 .57 1.00 .93 .60 .51
.50 .45 .33 .30 .65 .60 .30 .27 .50 .42 .33 .28 .65 .56 .30 .26

.10 �1.00 �1.00 �.51 �.48 �1.00 �1.00 �.78 �.73 �1.00 �1.00 �.51 �.45 �1.00 �1.00 �.78 �.70
�.50 �.50 �.25 �.24 �.68 �.66 �.39 �.36 �.50 �.50 �.25 �.23 �.68 �.65 �.39 �.35

:P p .50A

.90 1.00 .70 .33 .27 1.00 .76 .56 .38 1.00 .50 .33 .23 1.00 .60 .56 .26
.50 .35 .17 .14 .54 .39 .28 .19 .50 .25 .17 .12 .54 .29 .28 .13

.50 1.00 .94 1.00 .94 1.00 1.00 1.00 .91 1.00 .90 1.00 .90 1.00 1.00 1.00 .85
.50 .47 .50 .47 .80 .77 .50 .46 .50 .45 .50 .45 .80 .75 .50 .43

.10 �1.00 �1.00 �.33 �.32 �1.00 �1.00 �.56 �.52 �1.00 �1.00 �.33 �.31 �1.00 �1.00 �.56 �.50
�.50 �.50 �.17 �.16 �.54 �.53 �.28 �.26 �.50 �.50 �.17 �.15 �.54 �.52 �.28 �.25

NOTE.—LD values were generated as described in table 3.

it is not uncommon to observe ratios of FT values 12.0
(or !0.5), indicating that the two LD measures’ FT val-
ues differ twofold. Overall, Q and d appear to outper-
form r and D′, in the presence of genotyping errors,
although exceptions certainly do exist, as is evident in
figures 2 and 3.

The Impact That Genotyping Errors Have on
Comparison of LD-Measure Difference between
Samples

Thus far, we have considered only how genotyping er-
rors affect LD estimates from a single sample. However,
the goal in many studies of background LD is to compare
the extent of LD between two samples. Therefore, we
have also investigated how genotyping errors affect the
comparison of LD between two samples. Intuitively, one
may conjecture that, if the same loci were genotyped
with both the same genotyping method and the same
genotyping-error rate, then the comparison of LD be-
tween the two samples compared would not be com-
promised by errors. However, as we will show, this is
not necessarily the case.

We performed extensive stochastic simulations to de-
termine if genotyping errors can lead to erroneous con-
clusions, when comparing LD between two samples.
The simulation approach differs somewhat from the de-
terministic formulas given in the previous sections in

that it introduces a stochastic element in sampling the
observed gamete that undergoes a genotyping error. As
described above, we considered both a SEM and a DEM
for genotyping errors. We simulated genotyping errors
in two samples, each consisting of 100 individuals (200
gametes). The simulations were iterated 100 times, and,
with each iteration, D′, r, Q, and d were calculated. For
presentation purposes, the iterations will be referred to
as “replicates.” Across all replicates, the average values
of D′, r, Q, and d were within 3% of that calculated
on the basis of the deterministic formulas previously
described for both the SEM and the DEM (data not
shown), implying that our simulation results were
accurate.

Table 5 provides, for the SEM and the DEM, the
average and the maximum absolute value in the LD-
measure differences between the two simulated samples,
which both have the same haplotype-frequency distri-
butions. Thus, in the absence of genotyping errors, the
LD-measure difference equals 0. As the error rate in-
creases, the average absolute value in the LD-measure
difference between samples increases moderately, to a
maximum of .0722, .0718, .0703, and .0427 for r, D′,
d, and Q, respectively. However, the maximum absolute
value in the LD-measure differences increases more dra-
matically as the genotyping-error rate increases. In other
words, although the average LD-measure difference be-
tween the two samples does not appear to compromise
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Figure 2 The effect that genotyping errors have on FT values, as a function of genotyping-error rate. In panel A, the haplotype frequencies
are , , , and ; in panel B, the haplotype frequencies are , , , and . Note that,P p .3 P p .3 P p .1 P p .3 P p .1 P p .4 P p .3 P p .2AB Ab aB ab AB Ab aB ab

in panel B, the lines corresponding to r and Q for the SEM are nearly superimposable.

the integrity of comparison of LD measures across sam-
ples, a comparison from any single experiment, in the
presence of genotyping errors, may lead to erroneous
inferences regarding the LD-measure difference between
the two samples.

This idea is formalized in figure 4, which shows how
the average absolute value in the D′ difference between
samples is distributed across replicates, under an SEM.
In figure 4A, samples 1 and 2 have the same distribution
of allele frequency ( ) and of haplotype fre-P p P p .5A B

quency ( , ), and, therefore,P p P p .5 P p P p 0AB ab Ab aB

, in the absence of genotyping errors, is 0. If′ ′FD � D F1 2

the genotyping-error rate is 1%, then ∼80% of all rep-
licates yield a D′ difference of 0–.03. As the genotyping-
error rate increases, the distribution gradually shifts
away from the true difference of 0. For example, if the
genotyping-error rate is 10%, then 22% of all replicates
show a D′ difference between samples that is 1.09, and
6% of all replicates show a difference that is 1.15. Fig-
ure 4B demonstrates how this problem is exacerbated

when the allele frequencies become more extreme.
Again, samples 1 and 2 have the same distribution of
allele frequency ( ) and of haplotype fre-P p P p .8A B

quency ( , , ). With theP p .8 P p .2 P p P p 0AB ab Ab aB

more extreme allele frequencies, even an error rate of
1% causes a noticeable shift in the distribution of

, away from the true value of 0, and an error′ ′FD � D F1 2

rate of 10% leads to 58% of all replicates showing a
D′ difference between samples that is 1.09. Although
these examples are simplified, because they do not take
into account the sampling variation in D′, they illustrate
how genotyping errors can make comparison of mea-
sures of LD between samples problematic.

Discussion

The development of the third-generation genetic map
composed of SNPs (The International SNP Map Work-
ing Group 2001) has enabled LD to assume a prominent
role in contemporary genetics research. Many studies on



Akey et al.: LD and Genotyping Errors 1453

Figure 3 Comparison of the robustness of D′, r, Q, and d. The ratio of FT values is plotted versus PAB. The curves correspond to the
ratios (blue), (green), (orange), (red), (black), and (brown). In panel A, the haplotype frequencies are′ ′ ′d/r r/D r/Q Q/d Q/D D /d P pAb

and . In panel B, the haplotype frequencies are and . The genotyping-error rate was setP p 0 P p 1 � P P p P p .25 P p .5 � PaB ab AB Ab aB ab AB

at 5%.

background LD have been and will be conducted to
better delimit the magnitude and distribution of LD,
within and between human populations. In the planning
and interpretation of LD studies, it is important to keep
in mind the effect that genotyping errors have on LD
measures. Through the use of deterministic formulas and
stochastic simulations, we have demonstrated both that
genotyping errors can have serious consequences with
regard to estimates of LD and that LD measures show
varying degrees of robustness in the presence of errors.
It is important to note that, in our study, we have as-
sumed that haplotypes were known without errors.
Therefore, our results are likely to be optimistic, since
haplotyping errors undoubtedly further impede accurate
estimation of LD (Tishkoff et al. 2000).

Genotyping errors have long been recognized as prob-
lematic in genetic studies. In fact, the literature is rich
in studies that have investigated the effect that geno-
typing errors have on linkage analysis. The general con-

clusions of these studies are that genotyping errors in-
crease estimated values of the recombination fraction
(Terwilliger et al. 1990), complicate the construction of
high-resolution linkage maps (Buetow 1991; Shields et
al. 1991; Lincoln and Lander 1992), and decrease the
power to detect a disease locus (Terwilliger et al. 1990;
Gordon et al. 1999; Goring and Terwilliger 2000).
More specifically, Gordon et al. (1999) employed a sim-
ulation approach to study how genotyping errors influ-
ence the power of the transmission/disequilibrium test,
using microsatellite markers, and concluded that error
rates should be kept !5%. Moreover, Gordon and Ott
(2001) investigated the consequences of SNP genotyp-
ing errors on the power of case-control studies, using
Pearson’s x2 as the test statistic, and proposed a novel
reduced-penetrance model to increase the power to de-
tect a disease locus. Although our study is complemen-
tary to the aforementioned investigations, it addresses
several unique points. For example, we have provided
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Table 5

Results of Stochastic Simulations for LD Measures, as a Function of the Genotyping-
Error Rate and Model

LD-MEASURE

DIFFERENCEa

VALUE WHEN GENOTYPING-ERROR RATE IS

1.00% 3.00% 5.00% 10.00%

SEM DEM SEM DEM SEM DEM SEM DEM

:′ ′F FD � D1 2

Average .0210 .0113 .0320 .0290 .0533 .0402 .0718 .0505
Maximum .0614 .0417 .1210 .0808 .1670 .1250 .2257 .1406

:F Fr � r1 2

Average .0219 .0143 .0330 .0246 .0484 .0324 .0722 .0515
Maximum .0602 .0398 .1300 .1093 .1704 .0992 .1792 .1204

:F FQ � Q1 2

Average .0008 .0003 .0041 .0014 .0102 .0036 .0427 .0133
Maximum .0042 .0013 .0272 .0075 .0467 .0104 .1052 .0300

:F Fd � d1 2

Average .0237 .0158 .0304 .0244 .0415 .0364 .0703 .0518
Maximum .0797 .0400 .1499 .0900 .1530 .0900 .1784 .1200

NOTE.—The haplotype frequencies for both samples in the absence of errors were set
at , .P p P p .5 P p P p 0AB ab Ab aB

a Between two simulated populations.

the first detailed analysis of how genotyping errors af-
fect the robustness of four commonly used LD mea-
sures. In addition, whereas those other studies have fo-
cused on disease-gene mapping, we provide practical
information on how genotyping errors complicate es-
timates of background LD.

In our analyses, we considered only SNPs, although
microsatellite markers are also commonly used in LD
studies (Peterson et al. 1995; Eaves et al. 2000). Our
results are not directly applicable to microsatellites,
since genotyping-error models for multiallelic markers
are much more complicated than either the SEM or the
DEM used in this study. Although we can not make
quantitative statements regarding the impact that ge-
notyping errors have on the robustness of LD measures
for microsatellites, our results can be approximately
generalized to microsatellites if the alleles are grouped
into two classes. In fact, there are several different strat-
egies for the grouping of microsatellite alleles (see Akey
et al. [2001a] for discussion) and it would be interesting
to explore the possibility that the method of grouping
influences the robustness of LD measures to genotyping
errors.

Furthermore, we have assumed that genotyping er-
rors follow either an SEM or a DEM. In reality, ge-
notyping errors may also follow a hybrid SEM-DEM.
Therefore, in the future, it may be worthwhile to in-
vestigate the impact that genotyping errors that follow
more-complex error models have on estimates of LD,
although the present study has captured the major fea-
tures of this problem. In fact, the SEM and the DEM
represent the two extreme cases of how genotyping er-
rors occur, with the former leading to more-serious af-

fects on LD measures than does the latter. Hence, for a
fixed genotyping-error rate, the FE for an LD measure
under a hybrid SEM-DEM is expected to be between
the FE for an LD measure under a strict SEM and that
for a strict DEM (i.e., ).FE � FE � FEDEM SEM-DEM SEM

Computer simulations of D′ have confirmed this ex-
pectation (data not shown). Moreover, comparing the
values in tables 4 and 5 demonstrates that, for a broad
range of allele frequencies, the differences between the
SEM and the DEM are small—and thus the differences
between a hybrid SEM-DEM and either a SEM or a
DEM are likely even smaller.

An important question in LD studies is, What mea-
sure of disequilibrium should be used? D′ and r (or )2r
are likely the two most commonly used measures. Al-
though no existing LD measure is independent of allele
frequencies (Lewontin 1988), the range of D′ is inde-
pendent of allele frequencies, making it attractive for
comparisons between samples. However, on the basis
of our data, Q and d are generally more robust to ge-
notyping errors over a wide range of haplotype fre-
quencies, than are D′ and r, although exceptions cer-
tainly do exist (see figs. 2 and 3). Thus, the choice of
LD measures is not straightforward. Because of the
computational ease afforded by D′, r, Q, and d, it is
feasible to calculate all four measures and then examine
them for any inconsistencies that may suggest the pres-
ence of genotyping errors.

Finally, it is interesting to consider published geno-
typing-error rates in the context of the present study.
Reported error rates vary from ∼1% (Pastinen et al.
2000; Akey et al. 2001b; Prince et al. 2001) to 30%
(Wang et al. 1998; Cho et al. 1999; Hacia et al. 1999).
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Figure 4 Distribution of the difference, in absolute value of D′,
between two simulated samples, in the presence of genotyping errors.
In panel A, the allele frequencies are ; in panel B, theP p P p .5A B

allele frequencies are . For both panels, the value ofP p P p .8A B

in the absence of genotyping errors is 0. Note that as the′ ′FD � D F1 2

error rates increase the distribution begins to shift away from the
expected difference of 0.

Obviously, a 30% error rate is unacceptable. However,
in light of our data, even error rates as low as 3% can
have important ramifications for LD measures. Thus,
we conclude that, to extract meaningful information
from LD studies, it is critical to minimize, if not elim-
inate, the extent of genotyping errors.
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